FastSpeech 2 Loss
FastSpeech2LossGen
Bases: Module
Source code in training/loss/fast_speech_2_loss_gen.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
__init__(bin_warmup=True, binarization_loss_enable_steps=1260, binarization_loss_warmup_steps=700)
Initializes the FastSpeech2LossGen module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_warmup |
bool
|
Whether to use binarization warmup. Defaults to True. NOTE: Switch this off if you preload the model with a checkpoint that has already passed the warmup phase. |
True
|
binarization_loss_enable_steps |
int
|
Number of steps to enable the binarization loss. Defaults to 1260. |
1260
|
binarization_loss_warmup_steps |
int
|
Number of warmup steps for the binarization loss. Defaults to 700. |
700
|
Source code in training/loss/fast_speech_2_loss_gen.py
forward(src_masks, mel_masks, mel_targets, mel_predictions, log_duration_predictions, u_prosody_ref, u_prosody_pred, p_prosody_ref, p_prosody_pred, durations, pitch_predictions, p_targets, attn_logprob, attn_soft, attn_hard, step, src_lens, mel_lens, energy_pred, energy_target)
Computes the loss for the FastSpeech2 model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src_masks |
Tensor
|
Mask for the source sequence. |
required |
mel_masks |
Tensor
|
Mask for the mel-spectrogram. |
required |
mel_targets |
Tensor
|
Target mel-spectrogram. |
required |
mel_predictions |
Tensor
|
Predicted mel-spectrogram. |
required |
log_duration_predictions |
Tensor
|
Predicted log-duration. |
required |
u_prosody_ref |
Tensor
|
Reference unvoiced prosody. |
required |
u_prosody_pred |
Tensor
|
Predicted unvoiced prosody. |
required |
p_prosody_ref |
Tensor
|
Reference voiced prosody. |
required |
p_prosody_pred |
Tensor
|
Predicted voiced prosody. |
required |
durations |
Tensor
|
Ground-truth durations. |
required |
pitch_predictions |
Tensor
|
Predicted pitch. |
required |
p_targets |
Tensor
|
Ground-truth pitch. |
required |
attn_logprob |
Tensor
|
Log-probability of attention. |
required |
attn_soft |
Tensor
|
Soft attention. |
required |
attn_hard |
Tensor
|
Hard attention. |
required |
step |
int
|
Current training step. |
required |
src_lens |
Tensor
|
Lengths of the source sequences. |
required |
mel_lens |
Tensor
|
Lengths of the mel-spectrograms. |
required |
energy_pred |
Tensor
|
Predicted energy. |
required |
energy_target |
Tensor
|
Ground-truth energy. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: The total loss and its components. |
Note
Here is the description of the returned loss components:
total_loss
: This is the total loss computed as the sum of all the other losses.
mel_loss
: This is the mean absolute error (MAE) loss between the predicted and target mel-spectrograms. It measures how well the model predicts the mel-spectrograms.
sc_mag_loss
: This is the spectral convergence loss between the predicted and target mel-spectrograms. It measures how well the model predicts the mel-spectrograms in terms of their spectral structure.
log_mag_loss
: This is the log STFT magnitude loss between the predicted and target mel-spectrograms. It measures how well the model predicts the mel-spectrograms in terms of their spectral structure.
ssim_loss
: This is the Structural Similarity Index (SSIM) loss between the predicted and target mel-spectrograms. It measures the similarity between the two mel-spectrograms in terms of their structure, contrast, and luminance.
duration_loss
: This is the mean squared error (MSE) loss between the predicted and target log-durations. It measures how well the model predicts the durations of the phonemes.
u_prosody_loss
: This is the MAE loss between the predicted and reference unvoiced prosody. It measures how well the model predicts the prosody (rhythm, stress, and intonation) of the unvoiced parts of the speech.
p_prosody_loss
: This is the MAE loss between the predicted and reference voiced prosody. It measures how well the model predicts the prosody of the voiced parts of the speech.
pitch_loss
: This is the MSE loss between the predicted and target pitch. It measures how well the model predicts the pitch of the speech.
ctc_loss
: This is the Connectionist Temporal Classification (CTC) loss computed from the log-probability of attention and the lengths of the source sequences and mel-spectrograms. It measures how well the model aligns the input and output sequences.
bin_loss
: This is the binarization loss computed from the hard and soft attention. It measures how well the model learns to attend to the correct parts of the input sequence.
energy_loss
: This is the MSE loss between the predicted and target energy. It measures how well the model predicts the energy of the speech.
Source code in training/loss/fast_speech_2_loss_gen.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|