DiscriminatorR
DiscriminatorR
Bases: Module
A class representing the Residual Discriminator network for a UnivNet vocoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
resolution |
Tuple
|
A tuple containing the number of FFT points, hop length, and window length. |
required |
model_config |
VocoderModelConfig
|
A configuration object for the UnivNet model. |
required |
Source code in models/vocoder/univnet/discriminator_r.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
forward(x)
Forward pass of the DiscriminatorR class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
The input tensor. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[list[Tensor], Tensor]
|
A tuple containing the intermediate feature maps and the output tensor. |
Source code in models/vocoder/univnet/discriminator_r.py
spectrogram(x)
Computes the magnitude spectrogram of the input waveform.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
Input waveform tensor of shape [B, C, T]. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: Magnitude spectrogram tensor of shape [B, F, TT], where F is the number of frequency bins and TT is the number of time frames. |