Skip to content

AdaLayerNorm

AdaLayerNorm

Bases: Module

A class used to represent an adaptive layer normalization module.

Attributes:

Name Type Description
channels int

The number of channels in the input data.

eps float

A small value added to the denominator for numerical stability.

fc Linear

A fully connected layer used to compute the scale and shift parameters.

Parameters:

Name Type Description Default
style_dim int

The dimension of the style vector.

required
channels int

The number of channels in the input data.

required
eps float

A small value added to the denominator for numerical stability. Defaults to 1e-5.

1e-05
Source code in models/tts/styledtts2/diffusion/ada_layer_norm.py
class AdaLayerNorm(nn.Module):
    r"""A class used to represent an adaptive layer normalization module.

    Attributes:
        channels (int): The number of channels in the input data.
        eps (float): A small value added to the denominator for numerical stability.
        fc (nn.Linear): A fully connected layer used to compute the scale and shift parameters.

    Args:
        style_dim (int): The dimension of the style vector.
        channels (int): The number of channels in the input data.
        eps (float, optional): A small value added to the denominator for numerical stability. Defaults to 1e-5.
    """

    def __init__(self, style_dim: int, channels: int, eps: float=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.fc = nn.Linear(style_dim, channels*2)

    def forward(self, x: Tensor, s: Tensor) -> Tensor:
        r"""Applies adaptive layer normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor of shape (batch_size, num_samples, num_channels).
            s (torch.Tensor): The style tensor of shape (batch_size, style_dim).

        Returns:
            torch.Tensor: The normalized tensor of the same shape as the input tensor.
        """
        x = x.transpose(-1, -2)
        x = x.transpose(1, -1)

        h = self.fc(s)
        h = h.view(h.size(0), h.size(1), 1)

        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)

        x = F.layer_norm(x, (self.channels,), eps=self.eps)
        x = (1 + gamma) * x + beta
        return x.transpose(1, -1).transpose(-1, -2)

forward(x, s)

Applies adaptive layer normalization to the input tensor.

Parameters:

Name Type Description Default
x Tensor

The input tensor of shape (batch_size, num_samples, num_channels).

required
s Tensor

The style tensor of shape (batch_size, style_dim).

required

Returns:

Type Description
Tensor

torch.Tensor: The normalized tensor of the same shape as the input tensor.

Source code in models/tts/styledtts2/diffusion/ada_layer_norm.py
def forward(self, x: Tensor, s: Tensor) -> Tensor:
    r"""Applies adaptive layer normalization to the input tensor.

    Args:
        x (torch.Tensor): The input tensor of shape (batch_size, num_samples, num_channels).
        s (torch.Tensor): The style tensor of shape (batch_size, style_dim).

    Returns:
        torch.Tensor: The normalized tensor of the same shape as the input tensor.
    """
    x = x.transpose(-1, -2)
    x = x.transpose(1, -1)

    h = self.fc(s)
    h = h.view(h.size(0), h.size(1), 1)

    gamma, beta = torch.chunk(h, chunks=2, dim=1)
    gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)

    x = F.layer_norm(x, (self.channels,), eps=self.eps)
    x = (1 + gamma) * x + beta
    return x.transpose(1, -1).transpose(-1, -2)