Conformer Block
ConformerBlock
Bases: Module
ConformerBlock class represents a block in the Conformer model architecture.
The block includes a pointwise convolution followed by Gated Linear Units (GLU
) activation layer (Conv1dGLU
),
a Conformer self attention layer (ConformerMultiHeadedSelfAttention
), and optional feed-forward layer (FeedForward
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_model |
int
|
The number of expected features in the input. |
required |
n_head |
int
|
The number of heads for the multiheaded attention mechanism. |
required |
kernel_size_conv_mod |
int
|
The size of the convolving kernel for the convolution module. |
required |
embedding_dim |
int
|
The dimension of the embeddings. |
required |
dropout |
float
|
The dropout probability. |
required |
with_ff |
bool
|
If True, uses FeedForward layer inside ConformerBlock. |
required |
Source code in models/tts/delightful_tts/attention/conformer_block.py
forward(x, embeddings, mask, slf_attn_mask, encoding)
Forward pass of the Conformer block.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
Input tensor of shape (batch_size, seq_len, num_features). |
required |
embeddings |
Tensor
|
Embeddings tensor. |
required |
mask |
Tensor
|
The mask tensor. |
required |
slf_attn_mask |
Tensor
|
The mask for self-attention layer. |
required |
encoding |
Tensor
|
The positional encoding tensor. |
required |
Returns:
Name | Type | Description |
---|---|---|
Tensor |
Tensor
|
The output tensor of shape (batch_size, seq_len, num_features). |