Skip to content

Conformer Block

ConformerBlock

Bases: Module

ConformerBlock class represents a block in the Conformer model architecture. The block includes a pointwise convolution followed by Gated Linear Units (GLU) activation layer (Conv1dGLU), a Conformer self attention layer (ConformerMultiHeadedSelfAttention), and optional feed-forward layer (FeedForward).

Parameters:

Name Type Description Default
d_model int

The number of expected features in the input.

required
n_head int

The number of heads for the multiheaded attention mechanism.

required
kernel_size_conv_mod int

The size of the convolving kernel for the convolution module.

required
embedding_dim int

The dimension of the embeddings.

required
dropout float

The dropout probability.

required
with_ff bool

If True, uses FeedForward layer inside ConformerBlock.

required
Source code in models/tts/delightful_tts/attention/conformer_block.py
class ConformerBlock(Module):
    r"""ConformerBlock class represents a block in the Conformer model architecture.
    The block includes a pointwise convolution followed by Gated Linear Units (`GLU`) activation layer (`Conv1dGLU`),
    a Conformer self attention layer (`ConformerMultiHeadedSelfAttention`), and optional feed-forward layer (`FeedForward`).

    Args:
        d_model (int): The number of expected features in the input.
        n_head (int): The number of heads for the multiheaded attention mechanism.
        kernel_size_conv_mod (int): The size of the convolving kernel for the convolution module.
        embedding_dim (int): The dimension of the embeddings.
        dropout (float): The dropout probability.
        with_ff (bool): If True, uses FeedForward layer inside ConformerBlock.
    """

    def __init__(
        self,
        d_model: int,
        n_head: int,
        kernel_size_conv_mod: int,
        embedding_dim: int,
        dropout: float,
        with_ff: bool,
    ):
        super().__init__()
        self.with_ff = with_ff
        self.conditioning = Conv1dGLU(
            d_model=d_model,
            kernel_size=kernel_size_conv_mod,
            padding=kernel_size_conv_mod // 2,
            embedding_dim=embedding_dim,
        )
        if self.with_ff:
            self.ff = FeedForward(
                d_model=d_model,
                dropout=dropout,
                kernel_size=3,
            )
        self.conformer_conv_1 = ConformerConvModule(
            d_model,
            kernel_size=kernel_size_conv_mod,
            dropout=dropout,
        )
        self.ln = nn.LayerNorm(
            d_model,
        )
        self.slf_attn = ConformerMultiHeadedSelfAttention(
            d_model=d_model,
            num_heads=n_head,
            dropout_p=dropout,
        )
        self.conformer_conv_2 = ConformerConvModule(
            d_model,
            kernel_size=kernel_size_conv_mod,
            dropout=dropout,
        )

    def forward(
        self,
        x: torch.Tensor,
        embeddings: torch.Tensor,
        mask: torch.Tensor,
        slf_attn_mask: torch.Tensor,
        encoding: torch.Tensor,
    ) -> torch.Tensor:
        r"""Forward pass of the Conformer block.

        Args:
            x (Tensor): Input tensor of shape (batch_size, seq_len, num_features).
            embeddings (Tensor): Embeddings tensor.
            mask (Tensor): The mask tensor.
            slf_attn_mask (Tensor): The mask for self-attention layer.
            encoding (Tensor): The positional encoding tensor.

        Returns:
            Tensor: The output tensor of shape (batch_size, seq_len, num_features).
        """
        x = self.conditioning.forward(x, embeddings=embeddings)
        if self.with_ff:
            x = self.ff(x) + x
        x = self.conformer_conv_1(x) + x
        res = x
        x = self.ln(x)
        x, _ = self.slf_attn(
            query=x,
            key=x,
            value=x,
            mask=slf_attn_mask,
            encoding=encoding,
        )
        x = x + res
        x = x.masked_fill(mask.unsqueeze(-1), 0)
        return self.conformer_conv_2(x) + x

forward(x, embeddings, mask, slf_attn_mask, encoding)

Forward pass of the Conformer block.

Parameters:

Name Type Description Default
x Tensor

Input tensor of shape (batch_size, seq_len, num_features).

required
embeddings Tensor

Embeddings tensor.

required
mask Tensor

The mask tensor.

required
slf_attn_mask Tensor

The mask for self-attention layer.

required
encoding Tensor

The positional encoding tensor.

required

Returns:

Name Type Description
Tensor Tensor

The output tensor of shape (batch_size, seq_len, num_features).

Source code in models/tts/delightful_tts/attention/conformer_block.py
def forward(
    self,
    x: torch.Tensor,
    embeddings: torch.Tensor,
    mask: torch.Tensor,
    slf_attn_mask: torch.Tensor,
    encoding: torch.Tensor,
) -> torch.Tensor:
    r"""Forward pass of the Conformer block.

    Args:
        x (Tensor): Input tensor of shape (batch_size, seq_len, num_features).
        embeddings (Tensor): Embeddings tensor.
        mask (Tensor): The mask tensor.
        slf_attn_mask (Tensor): The mask for self-attention layer.
        encoding (Tensor): The positional encoding tensor.

    Returns:
        Tensor: The output tensor of shape (batch_size, seq_len, num_features).
    """
    x = self.conditioning.forward(x, embeddings=embeddings)
    if self.with_ff:
        x = self.ff(x) + x
    x = self.conformer_conv_1(x) + x
    res = x
    x = self.ln(x)
    x, _ = self.slf_attn(
        query=x,
        key=x,
        value=x,
        mask=slf_attn_mask,
        encoding=encoding,
    )
    x = x + res
    x = x.masked_fill(mask.unsqueeze(-1), 0)
    return self.conformer_conv_2(x) + x