Aligner
Aligner
Bases: Module
DEPRECATED: Aligner class represents a PyTorch module responsible for alignment tasks in a sequence-to-sequence model. It uses convolutional layers combined with LeakyReLU activation functions to project inputs to a hidden representation. The class utilizes both softmax and log-softmax to calculate softmax along dimension 3.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_enc_in |
int
|
Number of channels in the input for the encoder. |
required |
d_dec_in |
int
|
Number of channels in the input for the decoder. |
required |
d_hidden |
int
|
Number of channels in the output (hidden layers). |
required |
kernel_size_enc |
int
|
Size of the convolving kernel for encoder, default is 3. |
3
|
kernel_size_dec |
int
|
Size of the convolving kernel for decoder, default is 7. |
7
|
temperature |
float
|
The temperature value applied in Gaussian isotropic attention mechanism, default is 0.0005. |
0.0005
|
leaky_relu_slope |
float
|
Controls the angle of the negative slope of LeakyReLU activation, default is LEAKY_RELU_SLOPE. |
LEAKY_RELU_SLOPE
|
Source code in models/tts/delightful_tts/acoustic_model/aligner.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
binarize_attention_parallel(attn, in_lens, out_lens)
For training purposes only! Binarizes attention with MAS. Binarizes the attention tensor using Maximum Attention Strategy (MAS).
This process is applied for training purposes only and the resulting binarized attention tensor will no longer receive a gradient in the backpropagation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
attn |
Tensor
|
The attention tensor. Must be of shape (B, 1, max_mel_len, max_text_len), where B represents the batch size, max_mel_len represents the maximum length of the mel spectrogram, and max_text_len represents the maximum length of the text. |
required |
in_lens |
Tensor
|
A 1D tensor of shape (B,) that contains the input sequence lengths, which likely corresponds to text sequence lengths. |
required |
out_lens |
Tensor
|
A 1D tensor of shape (B,) that contains the output sequence lengths, which likely corresponds to mel spectrogram lengths. |
required |
Returns:
Name | Type | Description |
---|---|---|
Tensor |
Tensor
|
The binarized attention tensor. The output tensor has the same shape as the input |
Source code in models/tts/delightful_tts/acoustic_model/aligner.py
forward(enc_in, dec_in, enc_len, dec_len, enc_mask, attn_prior)
Performs the forward pass through the Aligner module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
enc_in |
Tensor
|
The text encoder outputs. Must be of shape (B, C_1, T_1), where B is the batch size, C_1 the number of channels in encoder inputs, and T_1 the sequence length of encoder inputs. |
required |
dec_in |
Tensor
|
The data to align with encoder outputs. Must be of shape (B, C_2, T_2), where C_2 is the number of channels in decoder inputs, and T_2 the sequence length of decoder inputs. |
required |
enc_len |
Tensor
|
1D tensor representing the lengths of each sequence in the batch in |
required |
dec_len |
Tensor
|
1D tensor representing the lengths of each sequence in the batch in |
required |
enc_mask |
Tensor
|
Binary mask tensor used to avoid attention to certain timesteps. |
required |
attn_prior |
Tensor
|
Previous attention values for attention calculation. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, Tensor, Tensor, Tensor]
|
Tuple[Tensor, Tensor, Tensor, Tensor]: Returns a tuple of Tensors representing the log-probability, soft attention, hard attention, and hard attention duration. |