Initializer
get_test_configs(srink_factor=4)
Returns a tuple of configuration objects for testing purposes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
srink_factor |
int
|
The shrink factor to apply to the model configuration. Defaults to 4. |
4
|
Returns:
Type | Description |
---|---|
Tuple[PreprocessingConfigUnivNet, AcousticENModelConfig, AcousticPretrainingConfig]
|
Tuple[PreprocessingConfig, AcousticENModelConfig, AcousticPretrainingConfig]: A tuple of configuration objects for testing purposes. |
This function returns a tuple of configuration objects for testing purposes. The configuration objects are as follows:
- PreprocessingConfig
: A configuration object for preprocessing.
- AcousticENModelConfig
: A configuration object for the acoustic model.
- AcousticPretrainingConfig
: A configuration object for acoustic pretraining.
The srink_factor
parameter is used to shrink the dimensions of the model configuration to prevent out of memory issues during testing.
Source code in models/helpers/initializer.py
init_acoustic_model(preprocess_config, model_config, n_speakers=10)
Function to initialize an AcousticModel
with given preprocessing and model configurations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preprocess_config |
PreprocessingConfigUnivNet
|
Configuration object for pre-processing. |
required |
model_config |
AcousticENModelConfig
|
Configuration object for English Acoustic model. |
required |
n_speakers |
int
|
Number of speakers. Defaults to 10. |
10
|
Returns:
Name | Type | Description |
---|---|---|
AcousticModel |
Tuple[AcousticModel, AcousticModelConfig]
|
Initialized Acoustic Model. |
The function creates an AcousticModelConfig
instance which is then used to initialize the AcousticModel
.
The AcousticModelConfig
is configured as follows:
- preprocess_config: Pre-processing configuration.
- model_config: English Acoustic model configuration.
- fine_tuning: Boolean flag set to True indicating the model is for fine-tuning.
- n_speakers: Number of speakers.
Source code in models/helpers/initializer.py
init_conformer(model_config)
Function to initialize a Conformer
with a given AcousticModelConfigType
configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_config |
AcousticModelConfigType
|
The object that holds the configuration details. |
required |
Returns:
Name | Type | Description |
---|---|---|
Conformer |
Tuple[Conformer, ConformerConfig]
|
Initialized Conformer object. |
The function sets the details of the Conformer
object based on the model_config
parameter.
The Conformer
configuration is set as follows:
- dim: The number of hidden units, taken from the encoder part of the model_config.encoder.n_hidden
.
- n_layers: The number of layers, taken from the encoder part of the model_config.encoder.n_layers
.
- n_heads: The number of attention heads, taken from the encoder part of the model_config.encoder.n_heads
.
- embedding_dim: The sum of dimensions of speaker embeddings and language embeddings.
The speaker_embed_dim and lang_embed_dim are a part of the model_config.speaker_embed_dim
.
- p_dropout: Dropout rate taken from the encoder part of the model_config.encoder.p_dropout
.
It adds a regularization parameter to prevent overfitting.
- kernel_size_conv_mod: The kernel size for the convolution module taken from the encoder part of the model_config.encoder.kernel_size_conv_mod
.
- with_ff: A Boolean value denoting if feedforward operation is involved, taken from the encoder part of the model_config.encoder.with_ff
.
Source code in models/helpers/initializer.py
init_forward_trains_params(model_config, acoustic_pretraining_config, preprocess_config, n_speakers=10)
Function to initialize the parameters for forward propagation during training.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_config |
AcousticENModelConfig
|
Configuration object for English Acoustic model. |
required |
acoustic_pretraining_config |
AcousticPretrainingConfig
|
Configuration object for acoustic pretraining. |
required |
preprocess_config |
PreprocessingConfigUnivNet
|
Configuration object for pre-processing. |
required |
n_speakers |
int
|
Number of speakers. Defaults to 10. |
10
|
Returns:
Name | Type | Description |
---|---|---|
ForwardTrainParams |
ForwardTrainParams
|
Initialized parameters for forward propagation during training. |
The function initializes the ForwardTrainParams object with the following parameters: - x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size] - speakers: Tensor containing the speaker indices. Shape: [speaker_embed_dim, batch_size] - src_lens: Tensor containing the lengths of source sequences. Shape: [batch_size] - mels: Tensor containing the mel spectrogram. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden] - mel_lens: Tensor containing the lengths of mel sequences. Shape: [batch_size] - pitches: Tensor containing the pitch values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden] - energies: Tensor containing the energy values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden] - langs: Tensor containing the language indices. Shape: [speaker_embed_dim, batch_size] - attn_priors: Tensor containing the attention priors. Shape: [batch_size, speaker_embed_dim, speaker_embed_dim] - use_ground_truth: Boolean flag indicating if ground truth values should be used or not.
All the Tensors are initialized with random values.
Source code in models/helpers/initializer.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
|
init_mask_input_embeddings_encoding_attn_mask(acoustic_model, forward_train_params, model_config)
Function to initialize masks for padding positions, input sequences, embeddings, positional encoding and attention masks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
acoustic_model |
AcousticModel
|
Initialized Acoustic Model. |
required |
forward_train_params |
ForwardTrainParams
|
Parameters for the forward training process. |
required |
model_config |
AcousticENModelConfig
|
Configuration object for English Acoustic model. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing the following elements: - src_mask: Tensor containing the masks for padding positions in the source sequences. Shape: [1, batch_size] - x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim] - embeddings: Tensor containing the embeddings. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim + lang_embed_dim] - encoding: Tensor containing the positional encoding. Shape: [lang_embed_dim, max(forward_train_params.mel_lens), model_config.encoder.n_hidden] - attn_maskЖ Tensor containing the attention masks. Shape: [1, 1, 1, batch_size] |
The function starts by generating masks for padding positions in the source and mel sequences. Then, it uses the acoustic model to get the input sequences and embeddings. Finally, it computes the positional encoding.