Skip to content

Utils

default(val, d)

Return the input value if it exists, otherwise return a default value.

Parameters:

Name Type Description Default
val Any

Input value.

required
d Any

Default value or function to generate the default value.

required

Returns:

Name Type Description
Any Any

Input value if it exists, otherwise the default value.

Source code in models/enhancer/gaussian_diffusion/utils.py
def default(val: Any, d: Any) -> Any:
    r"""Return the input value if it exists, otherwise return a default value.

    Args:
        val (Any): Input value.
        d (Any): Default value or function to generate the default value.

    Returns:
        Any: Input value if it exists, otherwise the default value.
    """
    if exists(val):
        return val
    return d() if isfunction(d) else d

exists(x)

Check if the input variable is not None.

Parameters:

Name Type Description Default
x Any

Input variable.

required

Returns:

Name Type Description
bool bool

True if the input variable is not None, False otherwise.

Source code in models/enhancer/gaussian_diffusion/utils.py
def exists(x: Any) -> bool:
    r"""Check if the input variable is not None.

    Args:
        x (Any): Input variable.

    Returns:
        bool: True if the input variable is not None, False otherwise.
    """
    return x is not None

extract(a, t, x_shape)

Extract elements from tensor 'a' using indices 't'.

Parameters:

Name Type Description Default
a Tensor

Input tensor.

required
t Tensor

Indices tensor.

required
x_shape Size

Shape of the input tensor 'a'.

required

Returns:

Type Description

torch.Tensor: Extracted elements tensor.

Source code in models/enhancer/gaussian_diffusion/utils.py
def extract(
    a: Tensor,
    t: Tensor,
    x_shape: Size,
):
    r"""Extract elements from tensor 'a' using indices 't'.

    Args:
        a (torch.Tensor): Input tensor.
        t (torch.Tensor): Indices tensor.
        x_shape (Size): Shape of the input tensor 'a'.

    Returns:
        torch.Tensor: Extracted elements tensor.
    """
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))

get_noise_schedule_list(schedule_mode, timesteps, min_beta=0.0, max_beta=0.01, s=0.008)

Generate a noise schedule list based on the specified mode.

Parameters:

Name Type Description Default
schedule_mode str

Mode for generating the noise schedule. Can be one of ["linear", "cosine", "vpsde"].

required
timesteps int

Total number of time steps.

required
min_beta float

Minimum value of beta for VPSDE mode. Defaults to 0.0.

0.0
max_beta float

Maximum value of beta for VPSDE mode. Defaults to 0.01.

0.01
s float

Parameter for cosine schedule mode. Defaults to 0.008.

0.008

Returns:

Type Description
ndarray

np.ndarray: List or array of beta coefficients for each time step.

Source code in models/enhancer/gaussian_diffusion/utils.py
def get_noise_schedule_list(
    schedule_mode: str,
    timesteps: int,
    min_beta: float = 0.0,
    max_beta: float = 0.01,
    s: float = 0.008,
) -> np.ndarray:
    r"""Generate a noise schedule list based on the specified mode.

    Args:
        schedule_mode (str): Mode for generating the noise schedule. 
                             Can be one of ["linear", "cosine", "vpsde"].
        timesteps (int): Total number of time steps.
        min_beta (float, optional): Minimum value of beta for VPSDE mode. Defaults to 0.0.
        max_beta (float, optional): Maximum value of beta for VPSDE mode. Defaults to 0.01.
        s (float, optional): Parameter for cosine schedule mode. Defaults to 0.008.

    Returns:
        np.ndarray: List or array of beta coefficients for each time step.
    """
    if schedule_mode == "linear":
        schedule_list = np.linspace(1e-4, max_beta, timesteps)
    elif schedule_mode == "cosine":
        steps = timesteps + 1
        x = np.linspace(0, steps, steps)
        alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
        alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
        betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
        schedule_list = np.clip(betas, a_min=0, a_max=0.999)
    elif schedule_mode == "vpsde":
        schedule_list = np.array([
            vpsde_beta_t(t, timesteps, min_beta, max_beta) for t in range(1, timesteps + 1)])
    else:
        raise NotImplementedError
    return schedule_list

noise_like(shape, device, repeat=False)

Generate random noise tensor with the given shape.

Parameters:

Name Type Description Default
shape Size

Shape of the noise tensor.

required
device device

Device for the tensor.

required
repeat bool

If True, repeat the noise tensor to match the given shape. Defaults to False.

False

Returns:

Type Description

torch.Tensor: Random noise tensor.

Source code in models/enhancer/gaussian_diffusion/utils.py
def noise_like(
    shape: Size,
    device: torch.device,
    repeat: bool = False,
):
    r"""Generate random noise tensor with the given shape.

    Args:
        shape (Size): Shape of the noise tensor.
        device (torch.device): Device for the tensor.
        repeat (bool, optional): If True, repeat the noise tensor to match the given shape. Defaults to False.

    Returns:
        torch.Tensor: Random noise tensor.
    """
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()

vpsde_beta_t(t, T, min_beta, max_beta)

Calculate beta coefficient for VPSDE noise schedule at time step t.

Parameters:

Name Type Description Default
t int

Current time step.

required
T int

Total number of time steps.

required
min_beta float

Minimum value of beta.

required
max_beta float

Maximum value of beta.

required

Returns:

Name Type Description
float

Beta coefficient at time step t.

Source code in models/enhancer/gaussian_diffusion/utils.py
def vpsde_beta_t(
    t: int,
    T: int,
    min_beta: float,
    max_beta: float,
):
    r"""Calculate beta coefficient for VPSDE noise schedule at time step t.

    Args:
        t (int): Current time step.
        T (int): Total number of time steps.
        min_beta (float): Minimum value of beta.
        max_beta (float): Maximum value of beta.

    Returns:
        float: Beta coefficient at time step t.
    """
    t_coef = (2 * t - 1) / (T ** 2)
    return 1. - np.exp(-min_beta / T - 0.5 * (max_beta - min_beta) * t_coef)