Configure hyperparameters from the CLI
Configure hyperparameters from the CLI (Intermediate)
More details are here: Configure hyperparameters from the CLI (Intermediate)
LightningCLI requirements
The LightningCLI
class is designed to significantly ease the implementation of CLIs. To use this class, an additional Python requirement is necessary than the minimal installation of Lightning provides. To enable, either install all extras:
or if only interested in LightningCLI
, just install jsonargparse
:
Implementing a CLI
Implementing a CLI is as simple as instantiating a LightningCLI
object giving as arguments classes for a LightningModule
and optionally a LightningDataModule
:
# main.py
from lightning.pytorch.cli import LightningCLI
# simple demo classes for your convenience
from lightning.pytorch.demos.boring_classes import DemoModel, BoringDataModule
def cli_main():
cli = LightningCLI(DemoModel, BoringDataModule)
# note: don't call fit!!
if __name__ == "__main__":
cli_main()
# note: it is good practice to implement the CLI in a function and call it in the main if block
Now your model can be managed via the CLI. To see the available commands type:
which prints out:
usage: main.py [-h] [-c CONFIG] [--print_config [={comments,skip_null,skip_default}+]]
{fit,validate,test,predict} ...
Lightning Trainer command line tool
optional arguments:
-h, --help Show this help message and exit.
-c CONFIG, --config CONFIG
Path to a configuration file in json or yaml format.
--print_config [={comments,skip_null,skip_default}+]
Print configuration and exit.
subcommands:
For more details of each subcommand add it as argument followed by --help.
{fit,validate,test,predict}
fit Runs the full optimization routine.
validate Perform one evaluation epoch over the validation set.
test Perform one evaluation epoch over the test set.
predict Run inference on your data.
The message tells us that we have a few available subcommands:
which you can use depending on your use case:
Train a model with the CLI
To train a model, use the fit
subcommand:
View all available options with the --help
argument given after the subcommand:
python main.py fit --help
usage: main.py [options] fit [-h] [-c CONFIG]
[--seed_everything SEED_EVERYTHING] [--trainer CONFIG]
...
[--ckpt_path CKPT_PATH]
--trainer.logger LOGGER
optional arguments:
<class '__main__.DemoModel'>:
--model.out_dim OUT_DIM
(type: int, default: 10)
--model.learning_rate LEARNING_RATE
(type: float, default: 0.02)
<class 'lightning.pytorch.demos.boring_classes.BoringDataModule'>:
--data CONFIG Path to a configuration file.
--data.data_dir DATA_DIR
(type: str, default: ./)
With the Lightning CLI enabled, you can now change the parameters without touching your code:
# change the learning_rate
python main.py fit --model.learning_rate 0.1
# change the output dimensions also
python main.py fit --model.out_dim 10 --model.learning_rate 0.1
# change trainer and data arguments too
python main.py fit --model.out_dim 2 --model.learning_rate 0.1 --data.data_dir '~/' --trainer.logger False
The options that become available in the CLI are the
__init__
parameters of theLightningModule
andLightningDataModule
classes. Thus, to make hyperparameters configurable, just add them to your class’s__init__
. It is highly recommended that these parameters are described in the docstring so that the CLI shows them in the help. Also, the parameters should have accurate type hints so that the CLI can fail early and give understandable error messages when incorrect values are given.
Why mix models and datasets
Lightning projects usually begin with one model and one dataset. As the project grows in complexity and you introduce more models and more datasets, it becomes desirable to mix any model with any dataset directly from the command line without changing your code.
# Mix and match anything
python main.py fit --model=GAN --data=MNIST
python main.py fit --model=Transformer --data=MNIST
LightningCLI
makes this very simple. Otherwise, this kind of configuration requires a significant amount of boilerplate that often looks like this:
# choose model
if args.model == "gan":
model = GAN(args.feat_dim)
elif args.model == "transformer":
model = Transformer(args.feat_dim)
...
# choose datamodule
if args.data == "MNIST":
datamodule = MNIST()
elif args.data == "imagenet":
datamodule = Imagenet()
...
# mix them!
trainer.fit(model, datamodule)
NOTE: It is highly recommended that you avoid writing this kind of boilerplate and use LightningCLI
instead.
Multiple LightningModules
To support multiple models, when instantiating LightningCLI
omit the model_class
parameter:
# main.py
from lightning.pytorch.cli import LightningCLI
from lightning.pytorch.demos.boring_classes import DemoModel, BoringDataModule
class Model1(DemoModel):
def configure_optimizers(self):
print("⚡", "using Model1", "⚡")
return super().configure_optimizers()
class Model2(DemoModel):
def configure_optimizers(self):
print("⚡", "using Model2", "⚡")
return super().configure_optimizers()
cli = LightningCLI(datamodule_class=BoringDataModule)
Now you can choose between any model from the CLI:
Note: Instead of omitting the model_class parameter, you can give a base class and
subclass_mode_model=True
. This will make the CLI only accept models which are a subclass of the given base class.
Multiple LightningDataModules
To support multiple data modules, when instantiating LightningCLI
omit the datamodule_class
parameter:
# main.py
import torch
from lightning.pytorch.cli import LightningCLI
from lightning.pytorch.demos.boring_classes import DemoModel, BoringDataModule
class FakeDataset1(BoringDataModule):
def train_dataloader(self):
print("⚡", "using FakeDataset1", "⚡")
return torch.utils.data.DataLoader(self.random_train)
class FakeDataset2(BoringDataModule):
def train_dataloader(self):
print("⚡", "using FakeDataset2", "⚡")
return torch.utils.data.DataLoader(self.random_train)
cli = LightningCLI(DemoModel)
Now you can choose between any dataset at runtime:
# use Model1
python main.py fit --data FakeDataset1
# use Model2
python main.py fit --data FakeDataset2
Instead of omitting the
datamodule_class
parameter, you can give a base class andsubclass_mode_data=True
. This will make the CLI only accept data modules that are a subclass of the given base class.
Multiple optimizers
Standard optimizers from torch.optim
work out of the box:
If the optimizer you want needs other arguments, add them via the CLI (no need to change your code)!
Furthermore, any custom subclass of torch.optim.Optimizer
can be used as an optimizer:
# main.py
import torch
from lightning.pytorch.cli import LightningCLI
from lightning.pytorch.demos.boring_classes import DemoModel, BoringDataModule
class LitAdam(torch.optim.Adam):
def step(self, closure):
print("⚡", "using LitAdam", "⚡")
super().step(closure)
class FancyAdam(torch.optim.Adam):
def step(self, closure):
print("⚡", "using FancyAdam", "⚡")
super().step(closure)
cli = LightningCLI(DemoModel, BoringDataModule)
Now you can choose between any optimizer at runtime:
# use LitAdam
python main.py fit --optimizer LitAdam
# use FancyAdam
python main.py fit --optimizer FancyAdam
Maybe it's an overhead. I'm not sure about this approach.