Find Bottlenecks
Find training loop bottlenecks
More details are here: Find bottlenecks
The most basic profile measures all the key methods across Callbacks
, DataModules
and the LightningModule
in the training loop.
Once the .fit()
function has completed, you’ll see an output like this:
FIT Profiler Report
-----------------------------------------------------------------------------------------------
| Action | Mean duration (s) | Total time (s) |
-----------------------------------------------------------------------------------------------
| [LightningModule]BoringModel.prepare_data | 10.0001 | 20.00 |
| run_training_epoch | 6.1558 | 6.1558 |
| run_training_batch | 0.0022506 | 0.015754 |
| [LightningModule]BoringModel.optimizer_step | 0.0017477 | 0.012234 |
| [LightningModule]BoringModel.val_dataloader | 0.00024388 | 0.00024388 |
| on_train_batch_start | 0.00014637 | 0.0010246 |
| [LightningModule]BoringModel.teardown | 2.15e-06 | 2.15e-06 |
| [LightningModule]BoringModel.on_train_start | 1.644e-06 | 1.644e-06 |
| [LightningModule]BoringModel.on_train_end | 1.516e-06 | 1.516e-06 |
| [LightningModule]BoringModel.on_fit_end | 1.426e-06 | 1.426e-06 |
| [LightningModule]BoringModel.setup | 1.403e-06 | 1.403e-06 |
| [LightningModule]BoringModel.on_fit_start | 1.226e-06 | 1.226e-06 |
-----------------------------------------------------------------------------------------------
Profile the time within every function
Once the .fit()
function has completed, you’ll see an output like this:
Profiler Report
Profile stats for: get_train_batch
4869394 function calls (4863767 primitive calls) in 18.893 seconds
Ordered by: cumulative time
List reduced from 76 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
3752/1876 0.011 0.000 18.887 0.010 {built-in method builtins.next}
1876 0.008 0.000 18.877 0.010 dataloader.py:344(__next__)
1876 0.074 0.000 18.869 0.010 dataloader.py:383(_next_data)
1875 0.012 0.000 18.721 0.010 fetch.py:42(fetch)
1875 0.084 0.000 18.290 0.010 fetch.py:44(<listcomp>)
60000 1.759 0.000 18.206 0.000 mnist.py:80(__getitem__)
60000 0.267 0.000 13.022 0.000 transforms.py:68(__call__)
60000 0.182 0.000 7.020 0.000 transforms.py:93(__call__)
60000 1.651 0.000 6.839 0.000 functional.py:42(to_tensor)
60000 0.260 0.000 5.734 0.000 transforms.py:167(__call__)
If the profiler report becomes too long, you can stream the report to a file:
from lightning.pytorch.profilers import AdvancedProfiler
profiler = AdvancedProfiler(dirpath=".", filename="perf_logs")
trainer = Trainer(profiler=profiler)
Measure accelerator usage
Another helpful technique to detect bottlenecks is to ensure that you’re using the full capacity of your accelerator (GPU/TPU/IPU/HPU). This can be measured with the DeviceStatsMonitor
:
from lightning.pytorch.callbacks import DeviceStatsMonitor
trainer = Trainer(callbacks=[DeviceStatsMonitor()])
CPU metrics will be tracked by default on the CPU accelerator. To enable it for other accelerators set DeviceStatsMonitor(cpu_stats=True)
. To disable logging CPU metrics, you can specify DeviceStatsMonitor(cpu_stats=False)
.
Find bottlenecks in your code (intermediate)
More details are here: Find bottlenecks in your code (intermediate)
Profile pytorch operations
To understand the cost of each PyTorch operation, use the PyTorchProfiler
built on top of the PyTorch profiler.
from lightning.pytorch.profilers import PyTorchProfiler
profiler = PyTorchProfiler()
trainer = Trainer(profiler=profiler)
The profiler will generate an output like this:
Profiler Report
Profile stats for: training_step
--------------------- --------------- --------------- --------------- --------------- ---------------
Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg
--------------------- --------------- --------------- --------------- --------------- ---------------
t 62.10% 1.044ms 62.77% 1.055ms 1.055ms
addmm 32.32% 543.135us 32.69% 549.362us 549.362us
mse_loss 1.35% 22.657us 3.58% 60.105us 60.105us
mean 0.22% 3.694us 2.05% 34.523us 34.523us
div_ 0.64% 10.756us 1.90% 32.001us 16.000us
ones_like 0.21% 3.461us 0.81% 13.669us 13.669us
sum_out 0.45% 7.638us 0.74% 12.432us 12.432us
transpose 0.23% 3.786us 0.68% 11.393us 11.393us
as_strided 0.60% 10.060us 0.60% 10.060us 3.353us
to 0.18% 3.059us 0.44% 7.464us 7.464us
empty_like 0.14% 2.387us 0.41% 6.859us 6.859us
empty_strided 0.38% 6.351us 0.38% 6.351us 3.175us
fill_ 0.28% 4.782us 0.33% 5.566us 2.783us
expand 0.20% 3.336us 0.28% 4.743us 4.743us
empty 0.27% 4.456us 0.27% 4.456us 2.228us
copy_ 0.15% 2.526us 0.15% 2.526us 2.526us
broadcast_tensors 0.15% 2.492us 0.15% 2.492us 2.492us
size 0.06% 0.967us 0.06% 0.967us 0.484us
is_complex 0.06% 0.961us 0.06% 0.961us 0.481us
stride 0.03% 0.517us 0.03% 0.517us 0.517us
--------------------- --------------- --------------- --------------- --------------- ---------------
Self CPU time total: 1.681ms
Profile a distributed model
To profile a distributed model, use the PyTorchProfiler
with the filename argument which will save a report per rank.
from lightning.pytorch.profilers import PyTorchProfiler
profiler = PyTorchProfiler(filename="perf-logs")
trainer = Trainer(profiler=profiler)
Visualize profiled operations
To visualize the profiled operations, enable emit_nvtx
in the PyTorchProfiler
.
from lightning.pytorch.profilers import PyTorchProfiler
profiler = PyTorchProfiler(emit_nvtx=True)
trainer = Trainer(profiler=profiler)
Then run as following:
To visualize the profiled operation, you can either use nvvp
:
or python: