Configure hyperparameters from the CLI
Configure hyperparameters from the CLI (Advanced)
More details are here: Configure hyperparameters from the CLI (Advanced)
Run using a config file
To run the CLI using a yaml config, do:
Individual arguments can be given to override options in the config file:
Automatic save of config
To ease experiment reporting and reproducibility, by default LightningCLI
automatically saves the full YAML configuration in the log directory. After multiple fit runs with different hyperparameters, each one will have in its respective log directory a config.yaml
file. These files can be used to trivially reproduce an experiment, e.g.:
The automatic saving of the config is done by the special callback SaveConfigCallback
. This callback is automatically added to the Trainer. To disable the save of the config, instantiate LightningCLI
with save_config_callback=None
.
To change the file name of the saved configs to e.g. name.yaml
, do:
It is also possible to extend the SaveConfigCallback
class, for instance to additionally save the config in a logger. An example of this is:
class LoggerSaveConfigCallback(SaveConfigCallback):
def save_config(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> None:
if isinstance(trainer.logger, Logger):
config = self.parser.dump(self.config, skip_none=False) # Required for proper reproducibility
trainer.logger.log_hyperparams({"config": config})
cli = LightningCLI(..., save_config_callback=LoggerSaveConfigCallback)
Prepare a config file for the CLI
The --help
option of the CLIs can be used to learn which configuration options are available and how to use them. However, writing a config from scratch can be time-consuming and error-prone. To alleviate this, the CLIs have the --print_config
argument, which prints to stdout the configuration without running the command.
For a CLI implemented as LightningCLI(DemoModel, BoringDataModule)
, executing:
generates a config with all default values like the following:
seed_everything: null
trainer:
logger: true
...
model:
out_dim: 10
learning_rate: 0.02
data:
data_dir: ./
ckpt_path: null
A standard procedure to run experiments can be:
# Print a configuration to have as reference
python main.py fit --print_config > config.yaml
# Modify the config to your liking - you can remove all default arguments
nano config.yaml
# Fit your model using the edited configuration
python main.py fit --config config.yaml